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Do you remember continuations?

🙋‍♂️ Hmm. . . . . . I forget. Help me remember!
🙋‍♂️ Yeah, I think they’re callback functions.
👴 I’m one with continuations.

Yes, they are just
callback functions!
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E.g. Read a file, then pass the result to a callback

readFile(file).flatMap { data => . . . . . . }

for {

data <- readFile(file)

. . . . . .
} yield res

with for
data ←
. . . . . .

Who talks.Continuations? 2/18
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Just a callback?
??

val v1 = f()

val v2 = g(v1)

val v3 = h(v2)

· · · · · ·

f() |>

((v1) => g(v1) |>

((v2) => h(v2) |>

((v3) => . . . . . . )))

def x |> k === k(x)

Pseudo Continuation-Passing Style Conversion

⁉️
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! !
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The first abstract machine for evaluating functional programs[4]:
Stack : Stores intermediate results
Environment : Stores variables
Control : Stores the next instruction
Dump : Stores the suspended computation

And J operator captures the Dump[10]

👉

🧐

This marks the origin
of continuations![17][7]
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Operators in Scheme[16], notably call/cc[15]*2:
Captures the current continuation as a first-class value

(let {[(x (call/cc (λ (κ)
(+ 2 (κ 4)))))]}

(+ x 3))

; => (let {[x 4]} (+ x 3))

; => returns 7

call/cc can be used to implement:
✅ non-local exit
✅ backtracking
· · · · · ·

👉

ANYTHING related to
control transfer

*2 Short of ”call-with-current-continuation”

The Evolution of Continuations.call/cc: goto Practical 5/18
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Problem: call/cc is a powerful control structure, but captures
the entire rest of the computation (like goto!)

Solution:

Use
Delimited Continuations![9]
✅ capturing

delimited
scoped continuations

✅ more structured and composable

The Evolution of Continuations.Delimited Continuations 6/18
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(+ 3 (reset (+ 4 (shift κ (κ (κ 5))))))

; => (+ 3 (+ 4 (+ 4 5)))

Several variants of operators:
• control/prompt[9] control0/prompt0[13]
• shift/reset[6] shift0/reset0[13]
• fcontrol/run[14]
•multiprompt extensions[8]
• · · · · · ·

Delimited continuations enable us to implement
✅ call/cc!
✅ ALLmonads!! · · · · · ·andvice-versa![8]

call/cc

monadsdelimited
controls

≡
≡

≡

The Evolution of Continuations.Delimited Continuations 7/18
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A program representation where control flow is made explicit
by chaining computations as continuations[12]:

(define (add1 x)

(+ x 1))

(define (mul2 x)

(* x 2))

(mul2 (add1 3))

CPS
Conversion!−−−−−−−−−→

(define (add1 x κ)
(κ (+ x 1)))

(define (mul2 x κ)
(κ (* x 2)))

(add1 3 (λ (smu)

(mul2 sum (λ (mul)

mul))))

CPS fixes the order of evaluation and control flow

1 2
1

2
,

so that it’s a good choice for
an intermediate representation

for language implementations!

The Evolution of Continuations.Continuation-Passing Style 8/18
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CPS as an intermediate representation (IR) for language impls[1]:

Source CPS Codegen
(Opts.)

✅ Good for functional languages
CPS operates functions as first-class values!

SML/NJ
Scheme

OCaml(
flambda
wasm

)


✅ Good for optimizations
Several optimizations can be done by β/η,
and each values are single-assignment!

Constant Folding
& Inlining ⇒ β reduction

Defunctionalization ⇒ η reduction
Common Subexpression

Elimination ⇒ EZ:

let z = a * b + a * b

in e

( *' ) a b (fun v1 ->

( *' ) a b (fun v2 ->

( +' ) v1 v2 (fun z ->

JeK

CPS
Conversion

(J−K)

same!

The Evolution of Continuations.Compiling with Continuations 9/18
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How do control transfers correspond in
functional and procedural?

I Functional side:

⬇️ J: Low-level continuation operator
⬇️ call/cc: Capturing entire continuation
👉 shift/reset: Structured, modular and composable control
⚙️ CPS as an IR

I Procedural side:

⬇️ jmp: Low-level control transfer
⬇️ goto: Arbitrary jumps in high-level repr.
👉 for / while / if: Structured, clear control[5]
⚙️ SSA*3 as an IR

*3 Static Single-Assignment form

The Evolution of Continuations.Correspondence between procedural 10/18



•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:
⬇️ J: Low-level continuation operator

⬇️ call/cc: Capturing entire continuation
👉 shift/reset: Structured, modular and composable control
⚙️ CPS as an IR

I Procedural side:
⬇️ jmp: Low-level control transfer

⬇️ goto: Arbitrary jumps in high-level repr.
👉 for / while / if: Structured, clear control[5]
⚙️ SSA*3 as an IR

*3 Static Single-Assignment form

The Evolution of Continuations.Correspondence between procedural 10/18



•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:
⬇️ J: Low-level continuation operator
⬇️ call/cc: Capturing entire continuation

👉 shift/reset: Structured, modular and composable control
⚙️ CPS as an IR

I Procedural side:
⬇️ jmp: Low-level control transfer
⬇️ goto: Arbitrary jumps in high-level repr.

👉 for / while / if: Structured, clear control[5]
⚙️ SSA*3 as an IR

*3 Static Single-Assignment form

The Evolution of Continuations.Correspondence between procedural 10/18



•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:
⬇️ J: Low-level continuation operator
⬇️ call/cc: Capturing entire continuation
👉 shift/reset: Structured, modular and composable control

⚙️ CPS as an IR

I Procedural side:
⬇️ jmp: Low-level control transfer
⬇️ goto: Arbitrary jumps in high-level repr.
👉 for / while / if: Structured, clear control[5]

⚙️ SSA*3 as an IR

*3 Static Single-Assignment form

The Evolution of Continuations.Correspondence between procedural 10/18



•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:
⬇️ J: Low-level continuation operator
⬇️ call/cc: Capturing entire continuation
👉 shift/reset: Structured, modular and composable control
⚙️ CPS as an IR

I Procedural side:
⬇️ jmp: Low-level control transfer
⬇️ goto: Arbitrary jumps in high-level repr.
👉 for / while / if: Structured, clear control[5]
⚙️ SSA*3 as an IR

And also,
CPS⇔ SSA! [2]

*3 Static Single-Assignment form
The Evolution of Continuations.Correspondence between procedural 10/18



継 続Continuations:

continued and to be continued

� 1. Introduction
• Today’s Topic
• Continuations?

� 2. The Evolution of
Continuations• Dump and J operator, SECD
machine• call/cc: goto Practical
• Delimited Continuations
• Continuation-Passing Style

• Compiling with Continuations
• Correspondence between

procedural

� 3. Continuations with
Effects• Why continuations for effects?
• Monads
• Algebraic Effect Handlers

� 4. Conclusion



•Why continuations for effects?継
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Effects, side effects or computational effects:
I Exception
I Async I/O
I Coroutines
I etc.

Handling effects is about what happens⸺

and when and how to resume.

So, it’s time for
Continuations!
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•Monads継
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An approach to modeling calculi with effects[11]:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

continuation

instance Monad Maybe where

return = Just

Just x >>= k = k x

Nothing >>= _ = Nothing

maybe e >>= \x -> u

⇓ direct-style
with do

do

x <- maybe e

u

_
👆

throw away continuation
to stop computation!

Continuations with Effects.Monads 12/18
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•Algebraic Effect Handlers継
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A newway to model effectful computations, with highmodularity
and composablility[3]:

type _ eff += Print : string -> unit eff

match perform @@ Print "hello" with

| effect (Print msg), k ->

print_endline msg; continue k ()

Handlers make it easier to
compose andmodularise

than
monad transformers!

*a Monad
Transformers

Algebraic Effect
Handlers

*a
https://www.youtube.com/watch?v=uxpDa-c-4Mc
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� Conclusion継
続

継
続

Summary
I Explain from the history to recent trends of continuations
I Continuations are powerful, joyful, and useful!
I Research about continuations is still hot topic, andcontinued!

Couldn’t talk today😭
I Type Systems

• Answer-Type Modification
• Linear Types for efficient runtime repr
• Type-preserving conversion

I Formal Semantics for Natural Languages
I Recursion
I · · · · · ·and anything about computation with continuations.
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