
継続C[ontinuations]:
continued←−−−−−−−−−

and−−−−−−−−−−−−−−→to be continued

At関数型まつり 2025 June 14, 2025
Satoru Kawahara

https://2025.fp-matsuri.org/

*1

Q. What is the most expressive concept of

functional programming?

A. Definitely, it's a

CONTINUATION![
要出典

]

*1
https://arkw.net/products/web/hakase/

https://arkw.net/products/web/hakase/

*1

Q. What is the most expressive concept of

functional programming?

A. Definitely, it's a

CONTINUATION![
要出典

]

*1
https://arkw.net/products/web/hakase/

https://arkw.net/products/web/hakase/

•Today’s Topic継
続

継
続

Learn about

Continuations:
The Concept, History, and Practice

•Today’s Topic継
続

継
続

Learn about

Continuations:
The Concept, History, and Practice

継 続Continuations:

continued and to be continued

� 1. Introduction
• Today’s Topic
• Continuations?

� 2. The Evolution of
Continuations• Dump and J operator, SECD
machine• call/cc: goto Practical
• Delimited Continuations
• Continuation-Passing Style

• Compiling with Continuations
• Correspondence between

procedural

� 3. Continuations with
Effects• Why continuations for effects?
• Monads
• Algebraic Effect Handlers

� 4. Conclusion

�Who talks継
続

継
続

🏢 eiicon, co.,ltd.
� �� Nymphium
❤️ OCaml
🤓 Interested in:

• Programming language theory and implementations
• Control flow and its operators

💪 Motto:
継 続 は 力 な り

Continuation is power

こんにちは､
びしょ〜じょです｡

https://corp.eiicon.net
https://twitter.com/Nymphium
https://github.com/Nymphium

�Who talks継
続

継
続

🏢 eiicon, co.,ltd.
� �� Nymphium
❤️ OCaml
🤓 Interested in:

• Programming language theory and implementations
• Control flow and its operators

💪 Motto:
継 続 は 力 な り

Continuation is power

こんにちは､
びしょ〜じょです｡

https://corp.eiicon.net
https://twitter.com/Nymphium
https://github.com/Nymphium

•Continuations?継
続

継
続

Do you remember continuations?

🙋‍♂️ Hmm. I forget. Help me remember!
🙋‍♂️ Yeah, I think they’re callback functions.
👴 I’m one with continuations.

Yes, they are just
callback functions!

Who talks.Continuations? 1/18

•Continuations?継
続

継
続

Do you remember continuations?
🙋‍♂️ Hmm. I forget. Help me remember!

🙋‍♂️ Yeah, I think they’re callback functions.
👴 I’m one with continuations.

Yes, they are just
callback functions!

Who talks.Continuations? 1/18

•Continuations?継
続

継
続

Do you remember continuations?
🙋‍♂️ Hmm. I forget. Help me remember!
🙋‍♂️ Yeah, I think they’re callback functions.

👴 I’m one with continuations.

Yes, they are just
callback functions!

Who talks.Continuations? 1/18

•Continuations?継
続

継
続

Do you remember continuations?
🙋‍♂️ Hmm. I forget. Help me remember!
🙋‍♂️ Yeah, I think they’re callback functions.
👴 I’m one with continuations.

Yes, they are just
callback functions!

Who talks.Continuations? 1/18

•Continuations?継
続

継
続

Do you remember continuations?
🙋‍♂️ Hmm. I forget. Help me remember!
🙋‍♂️ ✅ Yeah, I think they're callback functions.
👴 I’m one with continuations.

Yes, they are just
callback functions!

Who talks.Continuations? 1/18

•Continuations?継
続

継
続

E.g. Read a file, then pass the result to a callback

readFile(file).flatMap { data => }

for {

data <- readFile(file)

.
} yield res

with for
data ←
.

Who talks.Continuations? 2/18

•Continuations?継
続

継
続

E.g. Read a file, then pass the result to a callback

readFile(file).flatMap { data => }{ data => }

continuation

for {

data <- readFile(file)

.
} yield res

with for
data ←
.

Who talks.Continuations? 2/18

•Continuations?継
続

継
続

E.g. Read a file, then pass the result to a callback

readFile(file).flatMap { data => }

for {

data <- readFile(file)

.
} yield res

with for
data ←
.

Who talks.Continuations? 2/18

•Continuations?継
続

継
続

E.g. Read a file, then pass the result to a callback

readFile(file).flatMap { data => }{ data => }

for {

data <- readFile(file)

.
} yield res

with for
data ←
.

Who talks.Continuations? 2/18

•Continuations?継
続

継
続

E.g. Read a file, then pass the result to a callback

readFile(file).flatMap { data => }{ data => }

for {

data <- readFile(file)

.
} yield res

with for
data ←
.

desugar

Who talks.Continuations? 2/18

•Continuations?継
続

継
続

Just a callback?
??

val v1 = f()

val v2 = g(v1)

val v3 = h(v2)

· · · · · ·

f() |>

((v1) => g(v1) |>

((v2) => h(v2) |>

((v3) =>)))

def x |> k === k(x)

Pseudo Continuation-Passing Style Conversion

⁉️

Who talks.Continuations? 3/18

•Continuations?継
続

継
続

Just a callback?
??

val v1 = f()

val v2 = g(v1)

val v3 = h(v2)

· · · · · ·

f() |>

((v1) => g(v1) |>

((v2) => h(v2) |>

((v3) =>)))

def x |> k === k(x)

Pseudo Continuation-Passing Style Conversion

⁉️

Who talks.Continuations? 3/18

•Continuations?継
続

継
続

Just a callback?
??

val v1 = f()

val v2 = g(v1)

val v3 = h(v2)

· · · · · ·

f() |>

((v1) => g(v1) |>

((v2) => h(v2) |>

((v3) =>)))

def x |> k === k(x)

Pseudo Continuation-Passing Style Conversion

⁉️

val v3 =

. ((v3) =>)))

val v2 =

h(v2) ((v2) => h(v2) |>

val v1 =

g(v1) ((v1) => g(v1) |>

Who talks.Continuations? 3/18

•Continuations?継
続

継
続

Just a callback?
??

val v1 = f()

val v2 = g(v1)

val v3 = h(v2)

· · · · · ·

f() |>

((v1) => g(v1) |>

((v2) => h(v2) |>

((v3) =>)))

def x |> k === k(x)

Pseudo Continuation-Passing Style Conversion

⁉️

val v3 =

. ((v3) =>)))

val v2 =

h(v2) ((v2) => h(v2) |>

Who talks.Continuations? 3/18

•Continuations?継
続

継
続

Just a callback?
??

val v1 = f()

val v2 = g(v1)

val v3 = h(v2)

· · · · · ·

f() |>

((v1) => g(v1) |>

((v2) => h(v2) |>

((v3) =>)))

def x |> k === k(x)

Pseudo Continuation-Passing Style Conversion

⁉️

val v3 =

. ((v3) =>)))

Who talks.Continuations? 3/18

•Continuations?継
続

継
続

Just a callback?No—
Continuations are

val v1 = f()

val v2 = g(v1)

val v3 = h(v2)

· · · · · ·

f() |>

((v1) => g(v1) |>

((v2) => h(v2) |>

((v3) =>)))

def x |> k === k(x)

Pseudo Continuation-Passing Style Conversion

⁉️

Who talks.Continuations? 3/18

•Continuations?継
続

継
続

Just a callback?No—
Continuations are

! !

The Rest of The Computation!!
val v1 = f()

val v2 = g(v1)

val v3 = h(v2)

· · · · · ·

f() |>

((v1) => g(v1) |>

((v2) => h(v2) |>

((v3) =>)))

def x |> k === k(x)

Pseudo Continuation-Passing Style Conversion

⁉️

Who talks.Continuations? 3/18

継 続Continuations:

continued and to be continued

� 1. Introduction
• Today’s Topic
• Continuations?

� 2. The Evolution of
Continuations• Dump and J operator, SECD
machine• call/cc: goto Practical
• Delimited Continuations
• Continuation-Passing Style

• Compiling with Continuations
• Correspondence between

procedural

� 3. Continuations with
Effects• Why continuations for effects?
• Monads
• Algebraic Effect Handlers

� 4. Conclusion

•Dump and J operator, SECDmachine継
続

継
続

The first abstract machine for evaluating functional programs[4]:
Stack : Stores intermediate results
Environment : Stores variables
Control : Stores the next instruction
Dump : Stores the suspended computation

And J operator captures the Dump[10]

👉

🧐

This marks the origin
of continuations![17][7]

The Evolution of Continuations.Dump and J operator, SECDmachine 4/18

•Dump and J operator, SECDmachine継
続

継
続

The first abstract machine for evaluating functional programs[4]:
Stack : Stores intermediate results
Environment : Stores variables
Control : Stores the next instruction
Dump : Stores the suspended computation

And J operator captures the Dump[10]

👉

🧐

This marks the origin
of continuations![17][7]

The Evolution of Continuations.Dump and J operator, SECDmachine 4/18

•Dump and J operator, SECDmachine継
続

継
続

The first abstract machine for evaluating functional programs[4]:
Stack : Stores intermediate results
Environment : Stores variables
Control : Stores the next instruction
Dump : Stores the suspended computation
AndJ operator captures the Dump[10]

👉

🧐

This marks the origin
of continuations![17][7]

The Evolution of Continuations.Dump and J operator, SECDmachine 4/18

•call/cc: goto Practical継
続

継
続

Operators in Scheme[16], notably call/cc[15]*2:
Captures the current continuation as a first-class value

(let {[(x (call/cc (λ (κ)
(+ 2 (κ 4)))))]}

(+ x 3))

; => (let {[x 4]} (+ x 3))

; => returns 7

call/cc can be used to implement:
✅ non-local exit
✅ backtracking
· · · · · ·

👉

ANYTHING related to
control transfer

*2 Short of ”call-with-current-continuation”

The Evolution of Continuations.call/cc: goto Practical 5/18

•call/cc: goto Practical継
続

継
続

Operators in Scheme[16], notably call/cc[15]*2:
Captures the current continuation as a first-class value

(let {[(x (call/cc (λ (κ)
(+ 2 (κ 4)))))]}

(+ x 3))

; => (let {[x 4]} (+ x 3))

; => returns 7

call/cc can be used to implement:
✅ non-local exit
✅ backtracking
· · · · · ·

👉

ANYTHING related to
control transfer

*2 Short of ”call-with-current-continuation”

The Evolution of Continuations.call/cc: goto Practical 5/18

•call/cc: goto Practical継
続

継
続

Operators in Scheme[16], notably call/cc[15]*2:
Captures the current continuation as a first-class value

(let {[(x (call/cc (λ (κ)
(+ 2 (κ 4)))))]}

(+ x 3))

; => (let {[x 4]} (+ x 3))

; => returns 7

call/cc can be used to implement:
✅ non-local exit
✅ backtracking
· · · · · ·

👉

ANYTHING related to
control transfer

*2 Short of ”call-with-current-continuation”

The Evolution of Continuations.call/cc: goto Practical 5/18

•Delimited Continuations継
続

継
続

Problem: call/cc is a powerful control structure, but captures
the entire rest of the computation (like goto!)

Solution:

Use
Delimited Continuations![9]
✅ capturing

delimited
scoped continuations

✅ more structured and composable

The Evolution of Continuations.Delimited Continuations 6/18

•Delimited Continuations継
続

継
続

Problem: call/cc is a powerful control structure, but captures
the entire rest of the computation (like goto!)

Solution:

Use
Delimited Continuations![9]
✅ capturing

delimited
scoped continuations

✅ more structured and composable

The Evolution of Continuations.Delimited Continuations 6/18

•Delimited Continuations継
続

継
続

(+ 3 (reset (+ 4 (shift κ (κ (κ 5))))))

; => (+ 3 (+ 4 (+ 4 5)))

Several variants of operators:
• control/prompt[9] control0/prompt0[13]
• shift/reset[6] shift0/reset0[13]
• fcontrol/run[14]
•multiprompt extensions[8]
• · · · · · ·

Delimited continuations enable us to implement
✅ call/cc!
✅ ALLmonads!! · · · · · ·andvice-versa![8]

call/cc

monadsdelimited
controls

≡
≡

≡

The Evolution of Continuations.Delimited Continuations 7/18

•Delimited Continuations継
続

継
続

(+ 3 (reset (+ 4 (shift κ (κ (κ 5))))))

; => (+ 3 (+ 4 (+ 4 5)))

Several variants of operators: • control/prompt[9] control0/prompt0[13]
• shift/reset[6] shift0/reset0[13]
• fcontrol/run[14]
•multiprompt extensions[8]
• · · · · · ·

Delimited continuations enable us to implement
✅ call/cc!
✅ ALLmonads!! · · · · · ·andvice-versa![8]

call/cc

monadsdelimited
controls

≡

≡

≡

The Evolution of Continuations.Delimited Continuations 7/18

•Delimited Continuations継
続

継
続

(+ 3 (reset (+ 4 (shift κ (κ (κ 5))))))

; => (+ 3 (+ 4 (+ 4 5)))

Several variants of operators:
• control/prompt[9] control0/prompt0[13]
• shift/reset[6] shift0/reset0[13]
• fcontrol/run[14]
•multiprompt extensions[8]
• · · · · · ·

Delimited continuations enable us to implement
✅ call/cc!
✅ ALLmonads!!

· · · · · ·andvice-versa![8]
call/cc

monadsdelimited
controls

≡
≡

≡

The Evolution of Continuations.Delimited Continuations 7/18

•Delimited Continuations継
続

継
続

(+ 3 (reset (+ 4 (shift κ (κ (κ 5))))))

; => (+ 3 (+ 4 (+ 4 5)))

Several variants of operators:
• control/prompt[9] control0/prompt0[13]
• shift/reset[6] shift0/reset0[13]
• fcontrol/run[14]
•multiprompt extensions[8]
• · · · · · ·

Delimited continuations enable us to implement
✅ call/cc!
✅ ALLmonads!! · · · · · ·andvice-versa![8]

call/cc

monadsdelimited
controls

≡
≡

≡

The Evolution of Continuations.Delimited Continuations 7/18

•Continuation-Passing Style継
続

継
続

A program representation where control flow is made explicit
by chaining computations as continuations[12]:

(define (add1 x)

(+ x 1))

(define (mul2 x)

(* x 2))

(mul2 (add1 3))

CPS
Conversion!−−−−−−−−−→

(define (add1 x κ)
(κ (+ x 1)))

(define (mul2 x κ)
(κ (* x 2)))

(add1 3 (λ (smu)

(mul2 sum (λ (mul)

mul))))

CPS fixes the order of evaluation and control flow

1 2
1

2
,

so that it’s a good choice for
an intermediate representation

for language implementations!

The Evolution of Continuations.Continuation-Passing Style 8/18

•Continuation-Passing Style継
続

継
続

A program representation where control flow is made explicit
by chaining computations as continuations[12]:

(define (add1 x)

(+ x 1))

(define (mul2 x)

(* x 2))

(mul2 (add1 3))

CPS
Conversion!−−−−−−−−−→

(define (add1 x κ)
(κ (+ x 1)))

(define (mul2 x κ)
(κ (* x 2)))

(add1 3 (λ (smu)

(mul2 sum (λ (mul)

mul))))

CPS fixes the order of evaluation and control flow

1 2
1

2
,

so that it’s a good choice for
an intermediate representation

for language implementations!

The Evolution of Continuations.Continuation-Passing Style 8/18

•Continuation-Passing Style継
続

継
続

A program representation where control flow is made explicit
by chaining computations as continuations[12]:

(define (add1 x)

(+ x 1))

(define (mul2 x)

(* x 2))

(mul2 (add1 3))

CPS
Conversion!−−−−−−−−−→

(define (add1 x κ)
(κ (+ x 1)))

(define (mul2 x κ)
(κ (* x 2)))

(add1 3 (λ (smu)

(mul2 sum (λ (mul)

mul))))

CPS fixes the order of evaluation and control flow

1 2
1

2

,
so that it’s a good choice for

an intermediate representation
for language implementations!

The Evolution of Continuations.Continuation-Passing Style 8/18

•Continuation-Passing Style継
続

継
続

A program representation where control flow is made explicit
by chaining computations as continuations[12]:

(define (add1 x)

(+ x 1))

(define (mul2 x)

(* x 2))

(mul2 (add1 3))

CPS
Conversion!−−−−−−−−−→

(define (add1 x κ)
(κ (+ x 1)))

(define (mul2 x κ)
(κ (* x 2)))

(add1 3 (λ (smu)

(mul2 sum (λ (mul)

mul))))

CPS fixes the order of evaluation and control flow

1 2
1

2

,
so that it’s a good choice for

an intermediate representation
for language implementations!

The Evolution of Continuations.Continuation-Passing Style 8/18

•Compiling with Continuations継
続

継
続

CPS as an intermediate representation (IR) for language impls[1]:

Source CPS Codegen
(Opts.)

✅ Good for functional languages
CPS operates functions as first-class values!

SML/NJ
Scheme

OCaml(
flambda
wasm

)


✅ Good for optimizations
Several optimizations can be done by β/η,
and each values are single-assignment!

Constant Folding
& Inlining ⇒ β reduction

Defunctionalization ⇒ η reduction
Common Subexpression

Elimination ⇒ EZ:

let z = a * b + a * b

in e

(*') a b (fun v1 ->

(*') a b (fun v2 ->

(+') v1 v2 (fun z ->

JeK

CPS
Conversion

(J−K)

same!

The Evolution of Continuations.Compiling with Continuations 9/18

•Compiling with Continuations継
続

継
続

CPS as an intermediate representation (IR) for language impls[1]:

Source CPS Codegen
(Opts.)

✅ Good for functional languages
CPS operates functions as first-class values!

SML/NJ
Scheme

OCaml(
flambda
wasm

)


✅ Good for optimizations
Several optimizations can be done by β/η,
and each values are single-assignment!

Constant Folding
& Inlining ⇒ β reduction

Defunctionalization ⇒ η reduction
Common Subexpression

Elimination ⇒ EZ:

let z = a * b + a * b

in e

(*') a b (fun v1 ->

(*') a b (fun v2 ->

(+') v1 v2 (fun z ->

JeK

CPS
Conversion

(J−K)

same!

The Evolution of Continuations.Compiling with Continuations 9/18

•Compiling with Continuations継
続

継
続

CPS as an intermediate representation (IR) for language impls[1]:

Source CPS Codegen
(Opts.)

✅ Good for functional languages
CPS operates functions as first-class values!

SML/NJ
Scheme

OCaml(
flambda
wasm

)


✅ Good for optimizations
Several optimizations can be done by β/η,
and each values are single-assignment!

Constant Folding
& Inlining ⇒ β reduction

Defunctionalization ⇒ η reduction
Common Subexpression

Elimination ⇒ EZ:

let z = a * b + a * b

in e

(*') a b (fun v1 ->

(*') a b (fun v2 ->

(+') v1 v2 (fun z ->

JeK

CPS
Conversion

(J−K)

same!

The Evolution of Continuations.Compiling with Continuations 9/18

•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:

⬇️ J: Low-level continuation operator
⬇️ call/cc: Capturing entire continuation
👉 shift/reset: Structured, modular and composable control
⚙️ CPS as an IR

I Procedural side:

⬇️ jmp: Low-level control transfer
⬇️ goto: Arbitrary jumps in high-level repr.
👉 for / while / if: Structured, clear control[5]
⚙️ SSA*3 as an IR

*3 Static Single-Assignment form

The Evolution of Continuations.Correspondence between procedural 10/18

•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:
⬇️ J: Low-level continuation operator

⬇️ call/cc: Capturing entire continuation
👉 shift/reset: Structured, modular and composable control
⚙️ CPS as an IR

I Procedural side:
⬇️ jmp: Low-level control transfer

⬇️ goto: Arbitrary jumps in high-level repr.
👉 for / while / if: Structured, clear control[5]
⚙️ SSA*3 as an IR

*3 Static Single-Assignment form

The Evolution of Continuations.Correspondence between procedural 10/18

•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:
⬇️ J: Low-level continuation operator
⬇️ call/cc: Capturing entire continuation

👉 shift/reset: Structured, modular and composable control
⚙️ CPS as an IR

I Procedural side:
⬇️ jmp: Low-level control transfer
⬇️ goto: Arbitrary jumps in high-level repr.

👉 for / while / if: Structured, clear control[5]
⚙️ SSA*3 as an IR

*3 Static Single-Assignment form

The Evolution of Continuations.Correspondence between procedural 10/18

•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:
⬇️ J: Low-level continuation operator
⬇️ call/cc: Capturing entire continuation
👉 shift/reset: Structured, modular and composable control

⚙️ CPS as an IR

I Procedural side:
⬇️ jmp: Low-level control transfer
⬇️ goto: Arbitrary jumps in high-level repr.
👉 for / while / if: Structured, clear control[5]

⚙️ SSA*3 as an IR

*3 Static Single-Assignment form

The Evolution of Continuations.Correspondence between procedural 10/18

•Correspondence between procedural継
続

継
続

How do control transfers correspond in
functional and procedural?

I Functional side:
⬇️ J: Low-level continuation operator
⬇️ call/cc: Capturing entire continuation
👉 shift/reset: Structured, modular and composable control
⚙️ CPS as an IR

I Procedural side:
⬇️ jmp: Low-level control transfer
⬇️ goto: Arbitrary jumps in high-level repr.
👉 for / while / if: Structured, clear control[5]
⚙️ SSA*3 as an IR

And also,
CPS⇔ SSA! [2]

*3 Static Single-Assignment form
The Evolution of Continuations.Correspondence between procedural 10/18

継 続Continuations:

continued and to be continued

� 1. Introduction
• Today’s Topic
• Continuations?

� 2. The Evolution of
Continuations• Dump and J operator, SECD
machine• call/cc: goto Practical
• Delimited Continuations
• Continuation-Passing Style

• Compiling with Continuations
• Correspondence between

procedural

� 3. Continuations with
Effects• Why continuations for effects?
• Monads
• Algebraic Effect Handlers

� 4. Conclusion

•Why continuations for effects?継
続

継
続

Effects, side effects or computational effects:
I Exception
I Async I/O
I Coroutines
I etc.

Handling effects is about what happens⸺

and when and how to resume.

So, it’s time for
Continuations!

Continuations with Effects.Why continuations for effects? 11/18

•Why continuations for effects?継
続

継
続

Effects, side effects or computational effects:
I Exception . halt?
I Async I/Owhen to resume?

I Coroutines which order to resume?

I etc.
Handling effects is about what happens⸺

and when and how to resume.

So, it’s time for
Continuations!

Continuations with Effects.Why continuations for effects? 11/18

•Why continuations for effects?継
続

継
続

Effects, side effects or computational effects:
I Exception . halt?
I Async I/O .when to resume?
I Coroutines . which order to resume?
I etc.

Handling effects is about what happens⸺
and when and how to resume.

So, it’s time for
Continuations!

Continuations with Effects.Why continuations for effects? 11/18

•Monads継
続

継
続

An approach to modeling calculi with effects[11]:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

continuation

instance Monad Maybe where

return = Just

Just x >>= k = k x

Nothing >>= _ = Nothing

maybe e >>= \x -> u

⇓ direct-style
with do

do

x <- maybe e

u

_
👆

throw away continuation
to stop computation!

Continuations with Effects.Monads 12/18

•Monads継
続

継
続

An approach to modeling calculi with effects[11]:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

continuation

instance Monad Maybe where

return = Just

Just x >>= k = k x

Nothing >>= _ = Nothing

maybe e >>= \x -> u

⇓ direct-style
with do

do

x <- maybe e

u

_
👆

throw away continuation
to stop computation!

Continuations with Effects.Monads 12/18

•Monads継
続

継
続

An approach to modeling calculi with effects[11]:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

continuation

instance Monad Maybe where

return = Just

Just x >>= k = k x

Nothing >>= _ = Nothing

maybe e >>= \x -> u

⇓ direct-style
with do

do

x <- maybe e

u

_
👆

throw away continuation
to stop computation!

Continuations with Effects.Monads 12/18

•Monads継
続

継
続

An approach to modeling calculi with effects[11]:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

continuation

instance Monad Maybe where

return = Just

Just x >>= k = k x

Nothing >>= _ = Nothing

maybe e >>= \x -> u

⇓ direct-style
with do

do

x <- maybe e

u

_
👆

throw away continuation
to stop computation!

Continuations with Effects.Monads 12/18

•Monads継
続

継
続

An approach to modeling calculi with effects[11]:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

continuation

instance Monad Maybe where

return = Just

Just x >>= k = k x

Nothing >>= _ = Nothing

maybe e >>= \x -> u

⇓ direct-style
with do

do

x <- maybe e

u

_
👆

throw away continuation
to stop computation!

Continuations with Effects.Monads 12/18

•Monads継
続

継
続

An approach to modeling calculi with effects[11]:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

continuation

instance Monad Maybe where

return = Just

Just x >>= k = k x

Nothing >>= _ = Nothing

maybe e >>= \x -> u

⇓ direct-style
with do

do

x <- maybe e

u

_
👆

throw away continuation
to stop computation!

Continuations with Effects.Monads 12/18

•Algebraic Effect Handlers継
続

継
続

A newway to model effectful computations, with highmodularity
and composablility[3]:

type _ eff += Print : string -> unit eff

match perform @@ Print "hello" with

| effect (Print msg), k ->

print_endline msg; continue k ()

Handlers make it easier to
compose andmodularise

than
monad transformers!

*a Monad
Transformers

Algebraic Effect
Handlers

*a
https://www.youtube.com/watch?v=uxpDa-c-4Mc

Continuations with Effects.Algebraic Effect Handlers 13/18

https://www.youtube.com/watch?v=uxpDa-c-4Mc

•Algebraic Effect Handlers継
続

継
続

A newway to model effectful computations, with highmodularity
and composablility[3]:

type _ eff += Print : string -> unit eff

match perform @@ Print "hello" with

| effect (Print msg), k ->

print_endline msg; continue k ()

Handlers make it easier to
compose andmodularise

than
monad transformers!

*a Monad
Transformers

Algebraic Effect
Handlers

*a
https://www.youtube.com/watch?v=uxpDa-c-4McContinuations with Effects.Algebraic Effect Handlers 13/18

https://www.youtube.com/watch?v=uxpDa-c-4Mc

� Conclusion継
続

継
続

Summary
I Explain from the history to recent trends of continuations
I Continuations are powerful, joyful, and useful!
I Research about continuations is still hot topic, andcontinued!

Couldn’t talk today😭
I Type Systems

• Answer-Type Modification
• Linear Types for efficient runtime repr
• Type-preserving conversion

I Formal Semantics for Natural Languages
I Recursion
I · · · · · ·and anything about computation with continuations.

Conclusion 14/18

� References I継
続

継
続

[1] AndrewW. Appel. Compiling with continuations. USA: Cambridge University Press, 1992.
ISBN: 0521416957.

[2] AndrewW. Appel. “SSA is functional programming”. In: SIGPLAN Not. 33.4 (Apr. 1998),
pp. 17–20. ISSN: 0362-1340. DOI: 10.1145/278283.278285. URL:
https://doi.org/10.1145/278283.278285.

[3] Andrej Bauer and Matija Pretnar. “An Effect System for Algebraic Effects and Handlers”.
In: vol. 10. June 2013. ISBN: 978-3-642-40205-0. DOI:
10.1007/978-3-642-40206-7_1.

[4] W. H. Burge. “The evaluation, classification and interpretation of expressions”. In:
Proceedings of the 1964 19th ACM National Conference. ACM ’64. New York, NY, USA:
Association for Computing Machinery, 1964, pp. 11.401–11.4022. ISBN: 9781450379182.
DOI: 10.1145/800257.808888. URL:
https://doi.org/10.1145/800257.808888.

https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/278283.278285
https://doi.org/10.1007/978-3-642-40206-7_1
https://doi.org/10.1145/800257.808888
https://doi.org/10.1145/800257.808888

� II継
続

継
続

[5] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, eds. Structured programming. GBR:
Academic Press Ltd., 1972. ISBN: 0122005503.

[6] Olivier Danvy and Andrzej Filinski. “Abstracting control”. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming. LFP ’90. Nice, France: Association for
Computing Machinery, 1990, pp. 151–160. ISBN: 089791368X. DOI:
10.1145/91556.91622. URL: https://doi.org/10.1145/91556.91622.

[7] Olivier Danvy and Kevin Millikin. “A Rational Deconstruction of Landin’s J Operator”. In:
Implementation and Application of Functional Languages. Ed. by Andrew Butterfield,
Clemens Grelck, and Frank Huch. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 55–73. ISBN: 978-3-540-69175-4.

[8] R. Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. “A monadic framework for
delimited continuations”. In: J. Funct. Program. 17.6 (Nov. 2007), pp. 687–730. ISSN:
0956-7968. DOI: 10.1017/S0956796807006259. URL:
https://doi.org/10.1017/S0956796807006259.

https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259

� III継
続

継
続

[9] Mattias Felleisen. “The theory and practice of first-class prompts”. In: Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’88. San Diego, California, USA: Association for Computing Machinery, 1988,
pp. 180–190. ISBN: 0897912527. DOI: 10.1145/73560.73576. URL:
https://doi.org/10.1145/73560.73576.

[10] Peter J. Landin. “A Generalization of Jumps and Labels”. In: Higher Order Symbol.
Comput. 11.2 (Sept. 1998), pp. 125–143. ISSN: 1388-3690. DOI:
10.1023/A:1010068630801. URL:
https://doi.org/10.1023/A:1010068630801.

[11] Eugenio Moggi. “Notions of computation andmonads”. In: Information and
Computation 93.1 (1991). Selections from 1989 IEEE Symposium on Logic in Computer
Science, pp. 55–92. ISSN: 0890-5401. DOI:
https://doi.org/10.1016/0890-5401(91)90052-4. URL: https:
//www.sciencedirect.com/science/article/pii/0890540191900524.

https://doi.org/10.1145/73560.73576
https://doi.org/10.1145/73560.73576
https://doi.org/10.1023/A:1010068630801
https://doi.org/10.1023/A:1010068630801
https://doi.org/https://doi.org/10.1016/0890-5401(91)90052-4
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524

� IV継
続

継
続

[12] John C. Reynolds. “Definitional interpreters for higher-order programming languages”.
In: Proceedings of the ACM Annual Conference - Volume 2. ACM ’72. Boston,
Massachusetts, USA: Association for Computing Machinery, 1972, pp. 717–740. ISBN:
9781450374927. DOI: 10.1145/800194.805852. URL:
https://doi.org/10.1145/800194.805852.

[13] Chung-chieh Shan. “Shift to control”. In: Proceedings of the 5th workshop on Scheme and
Functional Programming. 2004, pp. 99–107.

[14] Dorai Sitaram. “Handling control”. In: SIGPLAN Not. 28.6 (June 1993), pp. 147–155. ISSN:
0362-1340. DOI: 10.1145/173262.155104. URL:
https://doi.org/10.1145/173262.155104.

[15] Guy L Steele Jr and Gerald Jay Sussman. The Revised Report on SCHEME: A Dialect of LISP.
Tech. rep. AI Memo 452. MIT Artificial Intelligence Laboratory, 1978. URL:
https://dspace.mit.edu/handle/1721.1/6283.

https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/173262.155104
https://doi.org/10.1145/173262.155104
https://dspace.mit.edu/handle/1721.1/6283

� V継
続

継
続

[16] Gerald Jay Sussman and Guy L. Steele Jr. SCHEME: An Interpreter for Extended Lambda
Calculus. Tech. rep. AI Memo 349. MIT Artificial Intelligence Laboratory, 1975. URL:
https://dspace.mit.edu/handle/1721.1/5794.

[17] Hayo Thielecke. “An Introduction to Landin ‘s “A Generalization of Jumps and Labels””.
In: Higher Order Symbol. Comput. 11.2 (Sept. 1998), pp. 117–123. ISSN: 1388-3690. DOI:
10.1023/A:1010060315625. URL:
https://doi.org/10.1023/A:1010060315625.

https://dspace.mit.edu/handle/1721.1/5794
https://doi.org/10.1023/A:1010060315625
https://doi.org/10.1023/A:1010060315625

	Introduction
	Today's Topic

	Who talks
	Continuations?

	The Evolution of Continuations
	Dump and J operator, SECD machine
	call/cc: goto Practical
	Delimited Continuations
	Continuation-Passing Style
	Compiling with Continuations
	Correspondence between procedural

	Continuations with Effects
	Why continuations for effects?
	Monads
	Algebraic Effect Handlers

	Conclusion
	References

