Guide

to
Profile-Guided
Optimization:
inlining, devirtualizing, and profiling

Satoru Kawahara
@Go Conference 2024

https://gocon.jp/2024/

BWho talks

ﬂ = Hello, I'm bisho-jo!

N ¥ O Nymphium
@ 2nd-year Golang student

Who talks 119

https://kanmu.co.jp
https://twitter.com/Nymphium
https://github.com/Nymphium

BmToday's Topic

By the way, do you ...

Today's Topic 2/19

BmToday's Topic

By the way, do you ...
& Use the Go Compiler?

Today's Topic 2/19

BmToday's Topic

By the way, do you ...
& Use the Go Compiler?
€ Use its Optimizations?

Today's Topic 2/19

BmToday's Topic

By the way, do you ...

& Use the Go Compiler?

€ Use its Optimizations?
Then,

Today's Topic

2/19

BmToday's Topic

By the way, do you ...
& Use the Go Compiler?
€ Use its Optimizations?

Then,
Do.you use
Profile-Guided

Optimization?

Today's Topic

BmToday's Topic

Today's Topic 3/19

BmToday's Topic

Learn about

Today's Topic 3/19

BmToday's Topic

Learn about

Profile-Guided
Optimization

Today's Topic

BmToday's Topic

Learn about
Profile-Guided
Optimization
and

its associated
optimizations

Today's Topic

BmToday's Topic

Profile-Guided Optimization (PGO, abbrev.)
is an optimization method that™:

"I https://go.dev/doc/pgo
Today's Topic 4/19

https://go.dev/doc/pgo

BmToday's Topic

Profile-Guided Optimization (PGO, abbrev.)
is an optimization method that™:

» Uses profiling information from program
execution

"I https://go.dev/doc/pgo
Today's Topic 4/19

https://go.dev/doc/pgo

BmToday's Topic

Profile-Guided Optimization (PGO, abbrev.)
is an optimization method that™:
» Uses profiling information from program
execution

» Enables more aggressive optimizations,
such as inlining and devirtualization

" https://go.dev/doc/pgo

Today's Topic 4/19

https://go.dev/doc/pgo

BmToday's Topic

Profile-Guided Optimization (PGO, abbrev.)
is an optimization method that™:
» Uses profiling information from program
execution

» Enables more aggressive optimizations,
such as inlining and devirtualization

"I https://go.dev/doc/pgo
Today's Topic

4/19

https://go.dev/doc/pgo

BmToday's Topic

Learn about
Profile-Guided
Optimization
and

its associated
optimizations

Today's Topic

5/19

BmToday's Topic

Learn about

<" its associated
optimizations

& Function Inlining

& Devirtualization

BFunction Inlining

Function inlining, or simply inlining, is
the process of replacing a func call with its body.

func £ (x int) int {
return x * x

ks

func main() {
fmt.printf("%d", £(3))
L

Function Inlining 6/19

BFunction Inlining

Function inlining, or simply inlining, is
the process of replacing a func call with its body.

func £ (x int) int {

return * X
¥ See definitiorD
func main() {

fmt.printf("%d", £(3))
ks

Function Inlining 6/19

BFunction Inlining

Function inlining, or simply inlining, is

the process of replacing a func call with its body.

func £ (x int) int {
return * X

ks

See definitio

func f(x int) int {
eturn ;
Inline!

func main() {
fmt.printf("%d", £(3))
L

Function Inlining

func main() {
ks

fmt.printf("%d",)

6/19

BFunction Inlining

Function inlining, or simply inlining, is
the process of replacing a func call with its body.

» Reduces function call overhead:
No stack frame setup, no return address,

no arguments copying

» Enables further optimizations:
E.g., constant propagation, dead code elimination

func £ (x int) int { func f(x int) int {

return Xg* X [=8
¥ See definition]
Sfunc main() { Sfunc main() {

fmt.printf("%d", £(3)) fmt.printf("%d",

Function Inlining 6/19

eConditions for Inlining

Several conditionals to be applied™:

*2 https://github.com/golang/go/blob/gol.21.0/src/cmd/compile/internal/inline/inl.go

Function Inlining.Conditions for Inlining 7/19

https://github.com/golang/go/blob/go1.21.0/src/cmd/compile/internal/inline/inl.go

eConditions for Inlining

Several conditionals to be applied™:
» Non-leaf function:

*2 https://github.com/golang/go/blob/gol.21.0/src/cmd/compile/internal/inline/inl.go

Function Inlining.Conditions for Inlining 7/19

https://github.com/golang/go/blob/go1.21.0/src/cmd/compile/internal/inline/inl.go

eConditions for Inlining

Several conditionals to be applied™:
» Non-leaf function:
The func shouldn’t call other funcs.

func £ (x int) int {
return x * x
ks

func g (x int) int {
return f(x) + 1
ks

*2 https://github.com/golang/go/blob/gol.21.0/src/cmd/compile/internal/inline/inl.go

Function Inlining.Conditions for Inlining 7/19

https://github.com/golang/go/blob/go1.21.0/src/cmd/compile/internal/inline/inl.go

eConditions for Inlining

Several conditionals to be applied™:

» Non-leaf function:
The func shouldn't call other funcs.

func £ (x int) int {
return x * x
ks

func g (x int) int {
return + 1

gis
non-leaf function

*2 https://github.com/golang/go/blob/gol.21.0/src/cmd/compile/internal/inline/inl.go

Function Inlining.Conditions for Inlining 7/19

https://github.com/golang/go/blob/go1.21.0/src/cmd/compile/internal/inline/inl.go

eConditions for Inlining

Several conditionals to be applied™:

» Non-leaf function:
The func shouldn't call other funcs.

» Small function, “Budget” < 80:
Constructs are rated by their cost:

e 57 for non-leaf func call
e 1for panic
e efc.

The budget is the total cost of func body.

*2 https://github.com/golang/go/blob/gol.21.0/src/cmd/compile/internal/inline/inl.go

Function Inlining.Conditions for Inlining 7/19

https://github.com/golang/go/blob/go1.21.0/src/cmd/compile/internal/inline/inl.go

eConditions for Inlining

Several conditionals to be applied™:

» Non-leaf function:
The func shouldn't call other funcs.

» Small function, “Budget” < 80:

Constructs are rated by their cost:

e 57 for non-leaf func call
e 1 forpanic
e etc.

The budget is the total cost of func body.

» Andsoon---
e Not external function (e.g., C functions)
e No specific tags set, //go:noinline, //go:systemstack, etc.
e Not a complex body, including defer, select, etc.

*2 https://github.com/golang/go/blob/gol.21.0/src/cmd/compile/internal/inline/inl.go

Function Inlining.Conditions for Inlining 7/19

https://github.com/golang/go/blob/go1.21.0/src/cmd/compile/internal/inline/inl.go

BmDevirtualization

Devirtualization is an optimizations that
converts an interface method call into concrete

func call.

Devirtualization 8/19

BmDevirtualization

Devirtualization is an optimizations that
converts an interface method call into

WAIT!

Can you explain
how
interface method call
Works?

concrete func call.

Devirtualization 8/19

eInterface Method Call

Interface method calls in Go is perforemed based

on dynamic dispatch™3,

var r io.Reader

r = strings.NewReader("Hello")
buf := make([]byte, 5)

n, := r.Read(buf)

*3 https://research.swtch.com/interfaces

Devirtualization.Interface Method Call

9/19

https://research.swtch.com/interfaces

eInterface Method Call

Interface method calls in Go is perforemed based

on dynamic dispatch™3,

*strings.Reader
implements 10.Reader

10.Reader

= strings.NewReader('"Hello")
buf := make([]byte, 5)

n, := r.Read(buf)

*3 https://research.swtch.com/interfaces

Devirtualization.Interface Method Call

9/19

https://research.swtch.com/interfaces

eInterface Method Call

Interface method calls in Go is perforemed based
on dynamic dispatch™3,

*strings.Reader
implements io.Reader

10.Reader
strings.NewReader ("Hello")

: makei b?tei 5)

Look up concrete method
from type information
at runtime!

*3 https://research.swtch.com/interfaces

Devirtualization.Interface Method Call 9/19

https://research.swtch.com/interfaces

eInterface Method Call

Interface method calls in Go is perforemed based
on dynamic dispatch™3,

var r io.Reader

*strings.Reader info -
. . data N\
implements 10.Reader X
10.Reader] *strings.Reader{""Hello"}
strings.NewReader ("Hello") x *strings.Reader

: makei b?tei 5) type [——>

meths[0]
Look up concrete method
from type information
at runtime!

*3 https://research.swtch.com/interfaces

Devirtualization.Interface Method Call 9/19

https://research.swtch.com/interfaces

eInterface Method Call

Interface method calls in Go is perforemed based
on dynamic dispatch™3,

var r io.Reader

*strings.Reader | L,
. . data N\
implements 10.Reader X

10.Reader *stfings.Reader{"Hello"}
strings.NewReadey/("'Hello") *strings.Reader
::_make byte, /5) ype [—>
I:
meths[0] -
Look up concrete method
from type information Read([]byte) (int, error)
at runtime! € 32! at runtime

*3 https://research.swtch.com/interfaces

Devirtualization.Interface Method Call 9/19

https://research.swtch.com/interfaces

BmDevirtualization

Devirtualization is a kind of optimizations
that an converts interface method call <&
with concrete func call.

var r io.Reader

r = strings.NewReader("Hello")
buf := make([]byte, 5)

n, := r.Read(buf)

Devirtualization.Interface Method Call 10/19

BMDevirtualization

Devirtualization is a kind of optimizations
that an converts interface method call <&
with concrete func call.

var r io.Reader
r = strings.NewReader("Hello")

buf := make([]byte, 5)
/l

Look up concrete method
from type information
at runtime

Devirtualization.Interface Method Call 10/19

BMDevirtualization

Devirtualization is a kind of optimizations
that an converts interface method call <&
with concrete func call.

var r io.Reader
r = strings.NewReader("Hello")

buf := make([]byte, 5)
/!

Look up concrete method
from type information

at runtime ..? @

Devirtualization.Interface Method Call 10/19

BMDevirtualization

Devirtualization is a kind of optimizations
that an converts interface method call <&
with concrete func call.

var r io.ReadeﬁFl§1f

el strings.NewReader (''Hello")
buf := make([|byte, 5)

n, 1=
/L .

Look up concrete method Can analyze it calls

from type information =»| (*strings.Reader).Read

at runtime ..? ® at compile time!

Devirtualization.Interface Method Call 10/19

BMDevirtualization

Devirtualization is a kind of optimizations
that an converts interface method call <&

with concrete func call. var r io.Reader
info | , -
var r io.Reader data [/-
r = strings.NewReader('"Hello") /
buf := make([]byte, 5) type
meths[0]
y

Read([]byte) (int, error)

Devirtualization.Interface Method Call 10/19

BMDevirtualization

Devirtualization is a kind of optimizations
that an converts interface method call <&

with concrete func call. var r io.Reader
info | , -
var r io.Reader data /'

r = strings.NewReader("Hello") type

buf := make([]byte, 5)
n, 1= # :
meths[0] .
|CaII directly!! / '
Read([]byte) (int, error)

© 32! at compile runtime

Devirtualization.Interface Method Call 10/19

BmDevirtualization

Devirtualization is a kind of optimizations
that an converts interface method call <&
with concrete func call.
» Reduces interface method call overhead:
No look up and typechecking at runtime
» Enables further optimizations:

Same to inlining var r io.Reader
info | , -
var r io.Reader data ‘{ :

r = strings.NewReader(''Hello")

buf := make([]byte, 5) type
n, = &

meths[0] .
Call directly! y
Read([]byte) (int, error)

© 32! at compile runtime

Devirtualization.Interface Method Call 10/19

eLimitation for Devirtualization

LLimitation: can only be applied if concrete
method is determined statically.

var r 1o.Reader

if os.Getenv("MODE") == "string" {
r = strings.NewReader('"Hello")
} else {

r = bytes.NewReader ([]byte("Hello"))
L
buf := make([]byte, 5)
n, := r.Read(buf)

Devirtualization.Limitation for Devirtualization 11/19

eLimitation for Devirtualizati

on

A\Limitation: can only be applied
method is determined statically.

if concrete

var r io.Reader

} else {

L
buf := make([]byte, 5)
n, := r.Read(buf)

if i
r = strings.NewReader("Hello"

r = bytes.NewReader([]byte('"Hello"))

dynamic conditional

Devirtualization.Limitation for Devirtualization

11/19

eLimitation for Devirtualization

A\Limitation: can only be applied if concrete

method is determined statically.

var r io.Reader

dynamic conditional

if S
r = strings.NewReader('"Hello"

} else {
r = bytes.NewReader([]byte('"Hello"))
}

buf := make([|byte, 5)
n, — := Illiiililli

Devirtualization.Limitation for Devirtualization

11/19

eLimitation for Devirtualization

ALimitation: can only be applied if concrete
method is determined statically.

var r io.Reader

if

dynamic conditional

?

Can't resolve statically,
which should call
(*strings.Reader) .Read

Devirtualization.Limitation for Devirtualization 11/19

BProfile-Guided Optimization

Go compiler performs several optimizations,

Profile-Guided Optimization 12/19

BProfile-Guided Optimization

Go compiler performs several optimizations,
and there are still room for more!

» Conditionals for inlining
» Limitation for devirtualization

Profile-Guided Optimization 12/19

BProfile-Guided Optimization

Go compiler performs several optimizations,
and there are still room for more!

» Conditionals for inlining
» Limitation for devirtualization

This is where
Profile-Guided Optimization

comes in @

Profile-Guided Optimization 12/19

BProfile-Guided Optimization

PGO is an optimization method that:
» Uses profiling information from program
execution

» Enables more aggressive optimizations,
such as inlining and devirtualization

Profile-Guided Optimization

13/19

BProfile-Guided Optimization

PGO is an optimization method that:
» Uses profiling information from program
execution

» Enables more aggressive optimizations,
such as inlining and devirtualization
£ £

Profile-Guided Optimization

13/19

BProfile-Guided Optimization

PGO is an optimization method that:
» Uses profiling information from program
execution

So,
how to collect
profiles?

» Enables more aggressive optimizations,
such as inlining and devirtualization

E ~E

Profile-Guided Optimization

13/19

eCreating and Collecting Profiles

Profile data is represented as pprof format.
There are several choices to create:

© runtime/pprof
Writes out profile files
© net/http/pprof
Runs HTTP server for get profiling data

& gopkg.in/DataDog/dd-trace-go.v1/profiler
Sends profiles to the Datadog API

Profile-Guided Optimization.Creating and Collecting Profiles

14/19

https://github.com/google/pprof
https://pkg.go.dev/runtime/pprof
https://pkg.go.dev/net/http/pprof
https://pkg.go.dev/github.com/DataDog/dd-trace-go/v2@v2.0.0-beta.2/profiler

W#PR

2R T 1Y

CCTCTEIRTY

W#PR

1= 5,000R o

RYRIH-K j

1es

&4 o't“
4019 2412 345b 71890
Fr— « XL e o s

Bn-F @Fr-v

. - = B
Visah—R&ULTEZZ7ZTY
0
Fr—o +5,000 @
93
ONLINE SHOP -8,000 8

VISAY) | GPay

on
‘ STORE -1,200A8

W#PR

RYEIH-E

AYR1>T
Fr— « T

Visahi—R<EZZ 7Y

0827

@ ma|

visan) | o M
Vandle API server > ¢®Datadog

profiles,logs
via dd-trace-go/profiler

eCreating and Collecting Profiles

To fetch profiles from ¢®Datadog......

O datadog-pgo
Can fetch many profiles(p to 30?) at once!

Profile-Guided Optimization.Creating and Collecting Profiles 15/19

https://github.com/Datadog/datadog-pgo

eCreating and Collecting Profiles

To fetch profiles from ¢®Datadog......
O datadog-pgo
Can fetch many profiles(up to 30?) at once!
At build phase:

ENV DD_API_KEY=${DD_API_KEY}
ENV DD_APP_KEY=3${DD_APP_KEY}

RUN datadog-pgo -profiles 30 \
'service:vandle-api env:prd' ./default.pgo

Profile-Guided Optimization.Creating and Collecting Profiles

15/19

https://github.com/Datadog/datadog-pgo

eCreating and Collecting Profiles

To fetch profiles from ¢®Datadog......

O datadog-pgo
Can fetch many profiles(up to 30?) at once!
At build phase:

ENV DD_API_KEY=${DD_API_KEY}
ENV DD_APP_KEY=3${DD_APP_KEY}

RUN datadog-pgo -profiles 30 \
'service:vandle-api env:prd' ./default.pgo

& Pick from APM profile list BY HAND

Difficult to get
many profiles@

Profile-Guided Optimization.Creating and Collecting Profiles

15/19

https://github.com/Datadog/datadog-pgo

BCompiling with PGO

Compiler flags for PGO:

$ go build -pgo -gcflags='-m=2 -1=4' | /vandle-server

Compiling with PGO 16/19

BCompiling with PGO

Compiler flags for PGO:

$ go build -gcflags='-m=2 -1=4' _/vandle-server
/1
[enables PGO]

Compiling with PGO 16/19

BCompiling with PGO

Compiler flags for PGO:

-gcflags= 'm -1=4' _/vandle-server

$ go build
/1

enables PGO/

[verbose optimization]

Compiling with PGO

16/19

BCompiling with PGO

Compiler flags for PGO:
$ go build —gcflags:'m_' ./vandle-server
v/ Z N\

enables PGO || controls inlining, -1=4 enables
— inlining non-leaf functions (!)

verbose optimization

Compiling with PGO 16/19

BCompiling with PGO

Compiler flags for PGO:

$ go build -pgo -gcflags='-m=2 -1=4' | /vandle-server

Compiling with PGO 16/19

BCompiling with PGO

Compiler flags for PGO:

$ go build -pgo -gcflags='-m=2 -1=4' ./vandle-server
internal/reflectlite/type.go:414:28:

PGO devirtualizing interface call

u.common to rtype.common
runtime/mgcsweep.go:499:6:

cannot inline (*sweeplLocked).sweep:

function too complex:

cost 2030 exceeds budget 2000

Compiling with PGO

16/19

BCompiling with PGO

Compiler flags for PGO:
Devirtualize statically -
...... ambiguous interface call!

internal/reflectlite/type.go:414:28:
PGO devirtualizing interface call
u.common to rtype.common

$ go build -pgo -gcflags

runtime/mgcsweep.go:499:6:
cannot inline (*sweeplLocked).sweep:
function too complex:
cost 2030 exceeds budget 2000

Compiling with PGO 16/19

BCompiling with PGO

Compiler flags for PGO:
Devirtualize statically -
...... ambiguous interface call!

internal/reflectlite/type.go:414:28:
PGO devirtualizing interface call
u.common to rtype.common

Not inlined, but

runtime/mgcsweep.go:49 L
cannot inline (*sw budget is lifted to 2000!
function too complex
cost 2030 exceeds budget 20000/

$ go build -pgo -gcflags

Compiling with PGO 16/19

BMEvaluation

[~ 240000 lines |
Compiling Vandle API server,

with or without PGO and -1, then count output

$ go build \
| grep -E '(can inline|PGO devirtualizing)' \
| we -1

Evaluation 17/19

BMEvaluation

$ go build \
| grep -E '(can inline|PGO devirtualizing)' \
| we -1
] flags | result (lines) | inlining [PGO devirt |

-pgo=off (default) 110313 110313 -
-pgo=off -1=4 +67561 177874 -
-pgo -418 109879 16
-pgo -1=4 +68851 179147 17

Evaluation

18/19

BMEvaluation

$ go build \
| grep -E '(can inline|PGO devirtualizing)' \
| we -1
] flags | result (lines) | inlining [PGO devirt |

-pgo=off (default) 110313 110313

-pgo=off -1=4 | ,+67561 177874

-pgo / -418 109879

16

-pgo -1=4 /| ,+68851 | 179147

17

» -1=4 works well!

Evaluation

18/19

BMEvaluation

$ go build \
| grep -E '(can inline|PGO devirtualizing)' \
| we -1
] flags | result (lines) | inlining [PGO devirt |

-pgo=off (default) 110313 110313 -
-pgo=off -1=4 /)+6756'| 177874 -
-pgo /' -418 109879 16
-pgo -1=4 /)+68851 179147 17

» -1=4 works well!

e with PGO performs inlining +1273

Evaluation

18/19

BMEvaluation

$ go build \
| grep -E '(can inline|PGO devirtualizing)' \
| we -1
] flags | result (lines) | inlining [PGO devirt |

-pgo=off (default) 110313 110313 -
-pgo=off -1=4 +67561 177874 -
-pgo -418 109879 e)

-pgo -1=4 +68851 179147 /117

» -1=4 works well!
e with PGO performs inlining +1273

» -1=4 accelerates devirtualization

Evaluation 18/19

BMEvaluation

$ go build \
| grep -E '(can inline|PGO devirtualizing)' \
| we -1
] flags | result (lines) | inlining [PGO devirt |

—pgo=off (default) | _110313 | 110313 -
-pgo=off -1=4 4 +67561 | 177874 -
-pgo /| 418 109879 16

-pgo -1=4 | +68851 | 179147 17

» -1=4 works well!
e with PGQY/performs inlining +1273
» -1=4 accelgrates devirtualization

> WHAT?!
Optimizations is so complicated ... ®

Evaluation 18/19

BConclusion

» Introduces profile-guided optimization,
inlining and devirtualization

» Evaluates PGO with -1 flag,
using production code

» Vandle card is running with PGO build!

» Optimizations are so deep and
intereseting!

Conclusion 19/19

https://en.wikipedia.org/wiki/Cumulative_distribution_function

BConclusion

» Introduces profile-guided optimization,
inlining and devirtualization

Evaluates PGO with -1 flag,
using production code

Vandle card is running with PGO build!

Optimizations are so deep and
intereseting!

Couldn't talk today @:

>

v

Conclusion

Pprof for visualizing call site

PGO calculates hotness by CFD

AutoFDO, Continuous compiling with profiles
Comparison with other languages’ compilers

- Haskell, resolves all typeclass constraints
- VM JIT
- PGOin .NET

Interface with Generics
19/19

https://en.wikipedia.org/wiki/Cumulative_distribution_function

	Who talks
	Today's Topic
	Function Inlining
	Conditions for Inlining

	Devirtualization
	Interface Method Call
	Limitation for Devirtualization

	Profile-Guided Optimization
	Creating and Collecting Profiles

	Compiling with PGO
	Evaluation
	Conclusion

